@ Open Forum

Risk Management (Is Not) for Dummies'

Lt. Col. Steven R. Glazewski
Air Force Institute of Technology

Software program managers crave a silver bullet in the form of a comprebensive checklist of things to watch so the program

does not suffer from bad surprises. Highlighted in this article are some prime examples from almost 15 years™ experience
acquiring software in Department of Defense programs, from identifying broad areas where software risks tend to hide to

describing an eight-step risk management process. While there are no silver bullets to be found, there are a few golden
nuggets if you make the focused effort to look!

hat is risk management? We have all

heard the saying, “Give a man a fish,
and you feed him for a day. Teach a man
to fish, and you feed him for a lifetime.”
Let me revise that from a risk manage-
ment standpoint: “Put out a manager’s
fires, and you help him for a day. Teach a
manager fire prevention, and you help him
for a career.” If a manager understands
good risk management, he can worry
about things other than firefighting.

Unfortunately, most people who look
for risk management help are secking to
know the steps to put fires out. After all,
being a good firefighter has its rewards!
Take a look at your organization’s person-
of-the-quarter listing for the past few
years. Who is on it? Typically listed is the
person who put out the worst fire. What
about people who avoided the fires in the
first place? Therein lie the problems with
good risk management: pegple who avoid fires
do not get noticed, and the risks they avoid
do not get documented.

Risks that are well understood and
controlled tend not to become full-blown
problems, and thus are rarely documented
in risk databases. To this day, some people
mistakenly believe the millions of dollars
spent on Year 2000 mitigation were wast-
ed because “nothing bad happened.” This
is the irony: If people die or property is
destroyed, then preventative measures are
deemed inadequate; if nobody is hurt and
nothing is destroyed, then preventative
measures are deemed valueless!

We can do a lot of damage in the name
of process and standardization. Some things
lend themselves well to both such as
building a car on an assembly line. Some
things do not such as creative, knowledge-
based work like design and management.
Yet we sometimes delude ourselves by cre-
ating femplates for something like a risk
management plan. Look carefully at such
templates: 80 percent of the outline tends
to be boilerplate or context setting, The
meat is contained in sections that com-

February 2005

prise only 20 percent of the table of con-
tents entries. What does the template tell
you about those meaty sections? Almost
nothing! The real meat of a risk manage-
ment plan — assembling a qualified team,
devising ways to discover risks, devising
methods of quantifying or categorizing
the risks, and monitoring the risks — can-
not be completed by simply following a
checklist.

In contrast, template instructions for
the non-meaty sections tend to be far
more explicit (e.g, “state your funding
authorization by appropriation for each

“‘Risks that are well
understood and
controlled tend not to
become full-blown
problems, and thus are
rarely documented in
risk databases.”’

fiscal year”). Usually, this information is
readily available and easily culled from
program management plans, status
reports, organizational charts, etc. We
delude ourselves into thinking that a plan
is 80 percent complete when in fact we are
just getting started.

There is a subtle yet critical message
implied in the above: Nobody can give you
a simple risk checklist. The reality is, when
people want to learn/know how to do risk
management, they are looking for Dick-and-
Jane instructions for the weaty 20 percent.
That is, they are specifically looking for
detailed steps on those things that cannot
be determined in advance by someone
who is not intimately familiar with the
project and its domain and environment.

Simply put, they are looking for szeps,
words like “go to the financial department
and get last month’s numbers and look for
expenditures that lag the fiscal year spend-
ing plan.”” They do not want fasks like
“monitor the expenditures to verify
claimed accomplishments.” The message 1
get is, “Do not tell me what to think about
or investigate, tell me exactly who to see,
exactly what to ask, exactly what to record,
and exactly what to do about it. Don’t make
this hard — just tell me exactly what to do.”

There can be value added from a tem-
plate. But this is far more likely when the
template is based on a process or proce-
dure that is absolutely relevant to the pro-
gram. For example, if you are managing
an avionics modernization project, your
risk plan template should come from
another avionics modernization project.
Not only that, but also the template
should have been assessed and revised by
the last project. This feedback loop is crit-
icall If there was no feedback, then you
have no idea if the template’s prior users
benefited from it or not. In the worst case,
the very template you propose to use may
have Jindered their ability to discover,
quantify, categorize, prioritize, and man-
age project risks — and you do not know
that! Ideally, the prior users reviewed and
updated their risk management plan
throughout their project, and all of their
lessons learned were captured — you
should do this, too.

Speaking of lessons learned, I am
often asked for databases of risks, or more
simply, where an interested party should
look for risks experienced in past pro-
grams. The answer always disappoints the
inquirer for two reasons. First, the histori-
cal data that exists is typically a list of prob-
lems, not risks. Risks are undesirable events
that could happen: The concern over pos-
sible glitches associated with Year 2000 is
a great example. Problems are risks that
came to fruition. Problems are well docu-
mented in post-mortem analyses. But

www.stsc.hillaf.mil 27

Open Forum

good risk management — risk that did not

turn into problems — is forgotten.

Second, risks — and even problems —
experienced by past programs atre funed for
the environment that existed for that pro-
gram and the unique circumstances of
that program. What may have been a high-
priority risk for a past program may not be
worth your investment of resources to
monitor or track. Most people who
request lessons learned do not really want
a database anyway. They want the 15 or 20
items from the database that are most like-
ly to happen to them. And they do not
want to read hundreds of items to find
those 15 to 20 nuggets. They are really
asking me for a five-minute answer to a
two-week question.

That is not to say that there is no value
added in researching history. My experi-
ences show that there is a fertile ground
for finding risks — we know this because
problems have consistently arisen from
these areas. I have learned to focus some
risk identification energy on three areas (if
they are present in a project): test and inte-
gration hardware, interfaces, and reused
code.

* Test and integration hardware tends to
be a capacity-constraining resource. If
you have a system or software integra-
tion lab (SIL), you have a potential
resource conflict. Many efforts in the
program seem to demand SIL time
simultaneously, and usually the soft-
ware developers do not have top prior-
ity. I worked on a program where the
same test hardware was used to vali-
date test software and to test hardware
that was about to be sold to the gov-
ernment. Needless to say, the chance
to generate revenue trumped the soft-
ware developer’s needs until we were
able to prove that the impending
delays to the project would negatively
affect the contractor’s bottom line by
more than a little delay in cash flow.
While working on a different program,
I discovered that the developet’s
detailed schedules required over 30
hours per day in the SIL to meet the
schedule. Scheduling tools are great,
but they fail when you disable or
ignore the resource conflict warnings.

* Interfaces are historically a source of
error, and therefore risk. A recent big
example was the Mars Climate Orbiter
that crashed into the planet in 1999
because one group coded as if the
measurement were in feet while the
other coded as if it were in meters.
Most bugs in a program are problems
found while integrating modules or
communicating between objects. On a

28 CRrossTALK The Journal of Defense Software Engincering

grander scale in systems of systems,

the biggest risks are where the inde-

pendently built systems must interface.

System test engineers always praise a

good interface control document

(ICD) more than the project managers

bemoan the ICD’s cost. We have a

proverb that “good fences make good

neighbors” and the same is true in
software: If everyone knows the
boundary conditions and intetfaces,
things go much smoother. The hard
part is resisting the temptation to cut
or minimize the typically large expense
of creating good ICDs. ICDs are used
for inter-system interfaces, but there
are analogous — and equally valuable —
design products that should describe
the /ntra-system interfaces in detail.

¢ Reused code, which includes commet-

cial off-the-shelf code, is often so/d to
the program as a means of drastically
reducing development and test costs.
Code reuse can certainly reduce costs,
but only within the very narrow cit-
cumstances where you make absolute-
ly no changes to the code, and you use
it for exactly and only the purpose for
which it was designed. Many potential-
ly dangerous commercial products like
pesticides now carry a standard warn-
ing such as “Use of this product in a
manner other than described below is
a violation of federal law.” Yes, the
spray is flammable — no, you should
not use it to light your barbeque grill.
A similar warning should accompany
all attempts to reuse code, albeit only a
warning that it violates sound reuse
strategy, and maybe the laws of good
sense. It is not a bad idea to reuse
code, but you have to accept the limi-
tations when you do. If your plans call
for reusing code and you are assuming
substantial time and cost savings or
test simplification, you had better not
tinker with the reused code (or code
products) in any way, or you violate
your plan/assumption and incur risk.

Of course, the risk manager must look
beyond these three areas, and must apply
knowledge of the project’s details to
determine whether any of those three
areas are applicable and worthy of invest-
ing resources.

Risk management is much like being
the manager of a mutual fund or a stock
analyst on Wall Street. Risk managers are
asked to peer into the future — to make
predictions with better-than-average accu-
racy — to not only be right, but to know
what to do when they are right. Risk man-
agement goes beyond predicting risk; it
also demands planning to handle the risk

once it materializes. (As a side note, think
of how well paid mutual fund managers
and Wall Street stock analysts are, espe-
cially the successful ones!)

How do fund managers and analysts
become successful? They dig into the
details of a company. They may not have
complete data because the company may
not release any more than the minimum
required by law. Yet the manager can
assemble current information about this
particular company, as well as information
from its recent and not-so-recent past.
Information can be gathered about similar
companies over time, and about the seg-
ment of the economy that affects this
company. This information can then be
used to make an educated guess at future
earnings, profits, and trends. In other
words, they develop detailed knowledge
about the specific company, and compare
it with a solid general knowledge about the
industry and the economy. This helps
them more accurately foresee profitability,
which can then be used to make sound
investment decisions.

This is the essence of risk manage-
ment! The risk manager combines detailed
knowledge of the project with general
knowledge of the technical domain and
the acquisition environment to foresee
potential undesirable events, and to plan
and take actions accordingly.

Asking a complete novice to do risk
management is, well, risky. Risk manage-
ment involves thoughtful, determined,
and creative work to implement the fol-
lowing eight-step process.

Step I: Get Time to Do Risk

Management

If you are spending 95 percent of your
time doing day-to-day operations, you do
not have enough time to sit and think (or
plan or just be creative). You need slack
time — that is, time away from operations
— to plan and think. For a great discussion
on why, read Tom DeMarco’s book Slack
[1]. It even contains a few chapters on risk
management. Sometimes, this seemingly
simple step can be the hardest part. Next
comes the creative part.

Step 2: Plan Your Risk

Management Program

What method will you wuse to
discover/elicit risks? Who will help? (Hint:
you need those people who are intimately
familiar with the project, the domain, and
the environment.) What are the desired
outputs of your risk analysis? How will
you categorize ot quantify risk? What
information must be recorded for each

February 2005

risk? Who will use the data and how? Now
comes more creativity (problem solving)
and some tedium.

Step 3: Identify Risks

Gather the team and identify potential
risks. Remember that the team should
consist of people with lots of project and
domain experience. These people tend to
be senior members and are very busy, so
these identification sessions should be
short and controlled. Excellent adminis-
trative support is absolutely necessary! So
is follow-up and coordination of results.
For each risk identified, the team should
describe what data they need to assess the
risk. Much of that data will probably #or
be available at this meeting, which is okay.
This first session is identification only.

Step 4: Assess Risks

The risk team does risk assessment. It
involves a facilitator doing lots of
research and legwork before another
meeting with the experts. Once the data is
available and pre-distributed, the team can
reconvene to assess probabilities and
impacts, determine indicators that a risk
may be coming true, and prioritize the risks
according to the documented procedure.
The indicators are used to select metrics
so the decision-maker can be proactive
when choosing whether to implement
handling strategies.

Step 5: Plan to Handle Risks
With the decision-maker and the team,
decide how each risk will be handled.
Determine what, if any, mitigation efforts
are prudent; what alternative approaches
ot procedures ate available; and/or how to
share the risk. It is a good idea to identify
thresholds (or trigger points) associated
with the metrics selected in Step 4 so it is
easier to initiate action.

Step 6: Monitor Risks

Conduct operations and periodically
check to see if any of the risks show signs
of turning into problems, or if any of the
risks change because of the dynamics of
project and environment. This period
could be daily or weekly or something dif-
ferent, depending on how dynamic the
project and environment ate.

Step 7: Account for Changes
in the Environment and
Project

Periodically go back to Step 3. This period
could be weekly or monthly or something
different, depending on how dynamic the
project and environment are.

February 2005

Step 8: Improve Your Risk

Management Process

Periodically go back to Step 2. This period
could be quarterly or annually or some-
thing different, depending on how suc-
cessful your program is at giving sufficient
notice of things that may go wrong. This
is the part that everyone hates, but it is the
critical feedback loop that improves the
process — for you and for the next project
that uses your project as a template.

General Ideas

Here are some general ideas on risks. They

must be general because I do not (and

cannot) know the details of every reader’s
situation.

* If you cannot assign a probability,
assess an impact, or draft a unique
action plan, then the risk you have
identified is too generic, or not a risk at
all. For example, stating that the risk is
“our budget will get cut” is meaning-
less because you cannot say what the
impact is or what you would do about
it. A better risk would be “next year’s
budget will be cut by 5 percent, which
means we cannot fully fund long-lead
spares.” Document why you chose the
numbers you did. Why 5 percent and
not 8 percent or 2 percent? Why
impact spates and not tech orders?

» If a risk is a near-certainty, then it is
not a risk, it is something that the pro-
ject’s execution plan should already
address. Does it?

* Risks should be prioritized according to
an agreed-upon scheme. The risk team
may track 100 risks. Project managers
may only have time to track the top 10.
Of those, the senior acquisition offi-
cials probably have time and attention
for only the top two or three. Know
how these lists will be detived. Are they
based on probability of occurrence?
Are they based on severity of impact if
they do occur? Are they based on some
combination of the two?

* A top 10 list should have exactly 10
items. Having 15 different No. 7 priori-
#y items may look good when spread-
ing the wealth for performance review
bullets, but it does nothing for helping
senior people prioritize their time and
the favors they would like to call in.

* Good risk descriptions include indica-
tors, or some method of foreseeing
that the risk may actually be coming
true. The better these indicators are,
the better you can prepare the contin-
gency plans.

Finally, there ate many approaches and
processes to manage risk. An Internet

Risk Management (Is Not) For Dummies

search will turn up dozens. But remember
the rule of domain applicability: If the
risk management process was built by
those making and assembling automo-
biles, it may not be well suited for a differ-
ent environment such as software devel-
opment. Risk management, when done
correctly, consumes the time of the most
experienced, most project-knowledgeable
people who also happen to be the busiest
and highest-paid. However, the cost and
effort to prevent a fire is almost always far
less than the cost and effort to rebuild
after the fire is out. @

Reference

1. Demarco, Tom. Slack: Getting Past
Burnout, Busywork, and the Myth of
Total Efficiency. Broadway, 9 Apr.
2002.

Note

1. The views expressed in this article are
those of the author and do not neces-
sarily reflect the official policy ot posi-
tion of the Air Force, Department of
Defense, or the U.S. government
agency.

About the Author

Lt. Col. Steven R.
Glazewski is an instruc-
| tor at the Air Force
Institute of Technology.
He teaches Professional
Continuing Education
courses in software project planning and
execution, and software system mainte-
nance as part of the Software
Professional Development Program.
Glazewski has more than 18 years in
weapon system acquisition, including
assignments acquiring software for the
Advanced Cruise Missile, Embedded
GPS/INS navigation unit, and C-5
Avionics Modernization Program, as
well as experience maintaining an

accredited computer model/simulation.
He is an Institute of FElectrical and
Electronics Engineers Computer Society
Certified Software Development
Professional.

Aiir Force Institute of Technology
3100 Research BLVD

Pod 3

Kettering, OH 45420-4022
Phone: (937) 255-7777 ext. 3274
DSN: 785-7777 ext. 3274

E-mail: steven.glazewski@afit.edu

www.stsc.hillaf.mil 29

